Lesson plan

2023-1-SK01-KA220-SCH-00015112

Topic	Environmental awareness and technology	
Block name	How digital tools help protect the planet	
Age category 13 - 15	Duration 135 minutes	Number of teaching hours

Student-centered educational goals (content and performance standards)

Content standard:

- understands basic concepts: sustainability, recycling, carbon footprint, renewable resources
- understands the relationship between technology and nature conservation
- provides examples of digital tools supporting ecology (e.g. applications for waste sorting, tree mapping, energy consumption measurement)

Performance standard:

- applies the principles of visual communication (contrast, hierarchy, colors, typography)
- collaborates in a group and presents the result of the project
- reflects on their relationship to the environment and the possibilities of personal contribution

Integration of subjects:

- Science (biology): cardiovascular system, physiological responses of the body to stress
- Mathematics: data processing and graphical representation
- Technology/INF: micro:bit programming, working with sensors

21st century skills:

- Critical and systems thinking
- Digital literacy
- Creativity and visual communication
- Cooperation and civic responsibility

Teaching aids and teaching techniques:

- micro:bit
- pulse sensor compatible with micro:bit
- USB cable, battery module
- computer/laptop with internet access
- data recording table (paper or online)

References / Resources (videos, methodologies):

- https://www.microbit.org/
- https://makecode.microbit.org/

methodological materials about pulse sensors (e.g. Gravity: Heart Rate Sensor)

Motivational phase:

Duration: 20 minutes

Objective: The student will realize the importance of monitoring bodily functions and learn how technology can help promote health.

Introductory activity - motivation: The teacher plays a short video or shows a real sports bracelet that measures heart rate. He compares it with a simple micro:bit-based system.

Introduction to the issue (keywords): heart rate, pulse, physical activity, health, sensor Interactive questions and answers:

- What is heart rate?
- How does heart rate change at rest and during exercise?
- Why do athletes monitor their pulse?
- How can the micro:bit help with heart rate measurement?

Explain the purpose of the activity: to show students that digital tools can be used to monitor their health. Set expectations: students will program their own micro:bit to measure their heart rate and display it on the screen.

Exposure phase (discovery):

Duration: 95 minutes

Objective: Learn to work with a pulse sensor and micro:bit, record and evaluate the measured data.

Science Integration:

- comparison of resting and exercise heart rate
- discussion about optimal pulse values during exercise

Informatics integration:

- programming the micro:bit in MakeCode to read data from the sensor and display the result
- saving measured values in a table

Activities:

- 1. Connecting the pulse sensor to the micro:bit according to the diagram.
- 2. Programming the micro:bit to measure and display heart rate (BPM).
- 3. Measuring pulse at rest recording values in a table.
- 4. Pulse measurement after short physical activity (e.g. 20 squats or a short run).
- 5. Comparison and discussion of differences.

Group discussion:

- What did you find out about your pulse?
- Why does the pulse increase when moving?
- How can this measurement help with training or health monitoring?

Fixation phase (fixing and deepening):

Duration: 20 minutes Objective: to verify and consolidate the knowledge and skills acquired during the lesson.

Activities:

- Design a simple micro:bit application that alerts you if your heart rate exceeds a set limit.
- Create a short presentation of the group's results.

Student evaluation:

- program functionality
- correct sensor connection
- ability to interpret results
- teamwork

Attachments:

- sensor wiring diagram
- sample MakeCode program
- table for recording values